

Top-down N₂O emission estimation in California using tower measurements and an inverse modeling technique

Yuyan Cui, Lei Guo, Ying-Kuang Hsu, Matthias Falk, Xiaoxi Liu, Ken Stroud, Jorn Herner, Abhilash Vijayan

California Air Resources Board

MAC-MAQ Conference, Sep 13-15, 2019

Background

- Nitrous oxide (N₂O) is a long-lived climate pollutant with a high global warming potential (GWP=265 for 100-year), and is a strong agent for stratospheric ozone depletion
- Recent studies have suggested that N₂O emissions may be significantly higher than current estimates in the bottom-up emission inventories in California (e.g Jeong et al. 2018)
- Accurate estimation of statewide N₂O emissions is essential for developing effective mitigation strategies to meet California's climate goals

Objectives

- Top-down evaluation of statewide N₂O emissions in California (using inverse modeling and long-term ground-level measurements conducted at CARB GHG monitoring network sites)
- Regional evaluation to characterize the spatio-temporal variations of N₂O emissions
- Multi-year evaluation to study the impact of precipitation and climate feedback to N₂O emissions in California

Inverse Modeling

Spatially Resolved a-Priori Inventories

Courtesy of Jianjun Chen and Majiong Jiang (CARB)

Priors	Description	Emission (Gg N2O/yr)
Prior _{EDGAR-CARB}	Spatially resolved EDGAR v42 FT2010, scaled to match CARB 2012 inventory	48.2
Prior _{EDGAR-DNDC-CARB}	Similar to Prior _{EDGAR-CARB} , with updated agriculture soil sector emissions from spatially resolved DNDC (i.e., DeNitrification-DeComposition) model	42.3

Atmospheric Measurements

Sites & Air-Basins

<u>N₂O Measurement Network</u>

- CARB Statewide GHG Monitoring Network 6 sites (2013-current)
- CARB-funded LA Megacities Network 3 sites (2017-current)
- CARB-funded Walnut Grove Tower 1 site (2015-2017)
- High-quality and high frequency N₂O measurements

Background determination for $\Delta N_2 O$

- Mauna Loa Observatory (MLO) data for general background (maybe under-estimated?)
- > Data from San Clemente Island (SCI, screened out NE and SE flows) for sites in the LA region

Atmospheric Transport Modeling

FLEXPART-WRF (Brioude et al. 2013)

- FLEXPART was configured to release 5,000 particles at the height of tower receptors to model the transport of the particles backward in time for 3 days for each receptor
- WRF configuration is similar to Cui et al. (2019): long-term simulations using the Pleim-Xiu land-surface model coupled with the YSU boundary layer scheme; North American Regional Reanalysis data were used to provide the initial and boundary conditions
- WRF evaluations are following Cui et al. (2019), using different PBLH retrievals to evaluate the PBLH simulations
 Cui et al. ES&T (2019)

Inverse Modeling Framework

Observed vs. Simulated N₂O (ppb)

- N₂O enhancements using the a-priori inventories are lower than the observed concentrations
- After the optimization processing, we improved r² and reduced mean biases (ppb).

Results: Statewide Emissions

- \blacktriangleright Average statewide top-down N₂O emissions are 1.3 to 2 times the bottom-up estimates
- Top-down estimates capture all N₂O in the atmosphere, whereas bottom-up inventory may not capture non-anthropogenic sources (e.g. biogenic, natural sources, oceans, forest, etc.)
- > Jeong et al (2018) estimated top-down emissions were 1.5-2.5 times bottom-up estimates
- ▶ N₂O emissions in 2018 (wet year) were higher than 2015 emissions (dry year) by roughly 40%

Results: Agricultural Emissions

SJV region shows the largest absolute difference in top-down vs. bottom-up N₂O emissions estimates in the state (maybe due to manure-related emissions), whereas SV emissions showed good agreement

- ➢ N₂O emissions in 2018 were only marginally higher than 2015 emissions
- Inversions using EDGAR-DNDC-CARB derived slightly higher emissions than EDGAR-CARB case

Results: Urban Emissions

- SoCAB top-down estimates were in agreement with bottom-up estimates during dry period, while SFBA top-down estimates were above bottom-up estimates in both years
- Increase in N₂O emissions from 2015 (dry year) to 2018 (wet year) in urban regions
- The difference (2015 vs. 2018) may be due to changes in urban soil/fertilizer emissions with precipitation (need further investigation).

Conclusions

- This study found that average top-down N₂O emission in California were 1.3 to 2 times the bottom-up anthropogenic inventory estimates
- Some of these differences can be attributed to biogenic emissions and natural sources, such as ocean upwelling, forest, wildfires, etc.
- Study also found large differences in top-down and bottom-up emissions in SJV and SFBA
- Emission differences were larger during a wet year (2018) as compared to a dry year (2015)
 - This difference was more pronounced in urban regions
- Plans to conduct further investigation to better understand the changes in urban N₂O emissions with precipitation, transportation sector, as well as long-term evaluation (e.g. 2014-2018) to understand the impact of climate feedback and track trends

Extra slides

2015

month of year

2018

month of year

Diff (posterior-prior) in 2D maps

