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SOA represents a particularly difficulty problem for atmospheric modelers, in part due to the complexity of 
its formation and fate



A variety of modeling schemes have been developed, with a wide range of complexity to balance 
computational efficiency with mechanistic fidelity

Pai et al., 2019



However, increased OA mechanism complexity within models has not always translated to increased model 
performance against observations

Pai et al., 2019
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However, increased OA mechanism complexity within models has not always translated to increased model 
performance against observations



If the final result is not coming out as expected, what are the possible explanations?

?



Source of discrepancies can come from issues with available ingredients

x
x



Source of discrepancies can come from issues with available ingredients,
as well as their processing

x
x



And what about the rest of the kitchen?

What aspects of our atmosphere are most important for SOA formation, and 
how consistent are they with the conditions assumed by our formation 

“recipes”?



The problem of “atmospherically relevant”



Project questions:

• What are the globally modeled spatiotemporal patterns of 
atmospheric parameters relevant to SOA formation?

• How do their distributions vary across domains relevant 
to human health and policy?

• How do the ranges of these distributions compare to those 
of chamber studies used to derive SOA yields?



Temperature and humidity together represent key ambient conditions relevant to SOA chemistry 
and partitioning
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Temperature and humidity together represent key ambient conditions relevant to SOA chemistry 
and partitioning
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Temperature and humidity together represent key ambient conditions relevant to SOA chemistry 
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Temperature and humidity together represent key ambient conditions relevant to SOA chemistry 
and partitioning
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Together, distributions of temperature and humidity levels provide a snapshot of representative 
conditions at the surface



Summing population counts instead of grid cells highlights patterns for the areas where people 
tend to live



How do these representative conditions compare to the conditions used for SOA chamber studies?

• 123 SOA published chamber studies (including 1259 
listed experiments) reviewed for species and 
conditions used

• Of those, 48 studies reported both temperature and 
humidity data

• Precursor species in all studies binned and tallied by 
temperature and humidity

Grid cell count

Grid cell population count



How do these representative conditions compare to the conditions used for SOA chamber studies?

Study count by speciesGrid cell count

Grid cell population count



Mass loading represents another key factor of SOA formation that can be compared for modeled 
atmospheric relevance

Mean monthly surface OA (2013)
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Mass loading represents another key factor of SOA formation that can be compared for modeled 
atmospheric relevance
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The modeled NO branching ratio varies strongly by season, location, and time of day

Pye et al., 2010

Mean monthly surface β (2013)



The modeled NO branching ratio varies strongly by season, location, and time of day

large diurnal variability

Mean monthly surface β (2013)
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Spatial patterns of mean RO2 chemical lifetime tend to vary inversely with branching ratio



Spatial patterns of mean RO2 chemical lifetime tend to vary inversely with branching ratio



Summary

• Ranges of key parameters for SOA formation within 
models can be defined for domains of interest

• The spatiotemporal patterns of these parameters 
can help highlight areas and conditions in particular 
need of additional study

• Ongoing work will explore some of these uncertain 
areas, both in the real-world chamber and in the 
modeled “kitchen”



Maximum yields of SOA from toluene and isoprene under dry (red color) and humid (black color) 
conditions (◦: toluene-NO2- hν; △: isoprene-NO2-hν; ⋆: isoprene-O3; ∗: isoprene-H2O2-hν).

Jia and Xu, 2018
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a) Gas-Phase Reactivity

+OH/O3/NO3

RO2•
+HO2

+NO

R′C=O
ROH

ROOH

RONO2

+RO2•

RO2•+O2
(H-shift)

Relevant Equations and 
Parameters: 
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Relevant Equations and 
Parameters: 

b) Gas-Particle Partitioning
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Relevant Equations and 
Parameters: 

c) Multiphase Chemistry
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Temperature

OA < 0.5 µg m-3

OA > 0.5 µg m-3

PBL Free TroposphereSurface All Land OA > 0.5 µg m-3



Relative Humidity
OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



JNO2

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



NO Branching Ratio (β) NO Branching Ratio

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



Total Organic Aerosol

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



Isoprene/Terpene SOA vs. Total OA

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



Aromatic SOA vs. Total OA

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



Aerosol Liquid Water
OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



Aerosol pH
OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



NOx

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



Summed VOCs

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



Summed VOCs vs. NOx

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



H2O2/HNO3

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



OM/(OM+IM)

OA < 0.5 µg m-3

OA > 0.5 µg m-3

All Land OA > 0.5 µg m-3PBL Free TroposphereSurface



RO2 Levels and ALW Frequencies
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