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What is ozone dry deposmon?

20-25% of all ozone loss in
the troposphere

Varies with:
 Turbulence

* Plant Physiology

e Surface Chemistry
e More!

The loss of ozone to the surface of the earth.




Traditional models use physically-based
resistance frameworks (e.g. Wesely 1989).

Loss ==V, [03]
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How does model V, compare to observations
globally?



How does model V, compare to observations
GE#S-Chem globally?
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Impact of V, biases on ozone is not small!
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Impact of V, biases on ozone is not small!
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Ozone V4 parameterization preforms reasonably
well.

However, there is certainly room for improvement!

So what do we do?
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Impact of V, biases on ozone is not small!

Ozone V, parameterization preforms reasonably

well.

However, there is certainly room for improvement!

So what do we do?

Data Driven Modeling!
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What is Deep Learning?

Deep Learning Machine Artificial

Feed forward neural Learning Intelligence

networks, recurrent neural Logistic regression, tree-

NGWOrKS, ... based methods, ... Rule-based techniques,
expert systems, ...

A method of building empirical models from data




Deep Learning Regression Model

Inputs: Physically Based e
Meteorology Resistance Prediction:
Vegetation Model Ozone V,
Etc.

Data Driven Model:
Deep Neural Network Regression Model




DNN Regression

Input Variables:
 Sensible Heat Flux
* Wind Speed

* Air Temperature o diction:
e Relative Humidity Y :
* PAR 3 ¥d
 Month

* Hour

‘A set of linear operations, modulated by a nonlinear term. ‘
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DNN Regression

Input Variables:
 Sensible Heat Flux
* Wind Speed

* Air Temperature
e Relative Humidity
* PAR

Prediction:
* O3V4

e Month
* Hour
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‘ Requirements: Large sets of input data for parameter training ‘




Long Term Observations
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Long Term Observations
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~10 years of V4 observations, with auxiliary measurements
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Long Term Observations
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Model Development Strategy:

Train at Hyytiala Forest
Evaluate at Harvard Forest
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Monthly DNN Performance — Model Driven

Observations Harvard Forest
DNN
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Monthly DNN Performance — Model Driven

Observations Harvard Forest

DNN
Wesely

O
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Data-Driven Model Outperforms Traditional SchemeI

Still more to be learned regarding higher order variability.
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With ~6 months of observations, we can get similar
accuracy over new vegetation types!

304

201

DNN Error

10 + | |

----------------------------------------------------

1 2 3 H 5 6 7 8 9 10 11 12
Silva et al. (GRL, 2019) Number of Months of Data



With ~6 months of observations, we can get similar
accuracy over new vegetation types!

= I Long term observations are important! I
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Why use Deep Learning over any other
fancy new machine learning method?

Deep learning to represent subgrid processes in
climate models

Stephan Rasp*™', Michael S. Pritchard®, and Pierre Gentine“®

Geophysical Research Letters

Toward Data-Driven Weather and Climate Forecasting:
Approximating a Simple General Circulation Model

With Deep Learning 14 FEBRUARY 2019 | VOL 566 | NATURE | 195
S- Scher’ Deep learning and process understanding
for data-driven Earth system science
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Why use Deep Learning over any other
fancy new machine learning method?

Model R MSE Time
DNN [1.00
Linear 0.22 0.52 < 0.01
Random forest | 1.27
Ridge 0.33 0.43 0.07

Deep learning to represent subgrid processes in
climate models

Stephan Rasp*™', Michael S. Pritchard®, and Pierre Gentine“®

Geophysical Research Letters

Toward Data-Driven Weather and Climate Forecasting:
Approximating a Simple General Circulation Model

With Deep Learning 14 FEBRUARY 2019 | VOL 566 | NATURE | 195
S- Scher’ Deep learning and process understanding
for data-driven Earth system science
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Conclusions

A.l. methods are powerful tools for modeling biosphere-
atmosphere exchange

— Can be more accurate than traditional physically-based
models

Observa tions
DNN-MERRA
0.51 Wesely

— No loss in computational speed
Costs

— Physical process-based insight
* But not always!

Ozone Deposition Velocity (cm/s)
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Month

Long term observations are extremely valuable!
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Theory Driven Modeling

inputs IR
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b{ Prediction




Data Driven Modeling

Detailed Model:

Parameters Prediction

Based in Theory

Data Driven Model:
Parameters Derived from Observations




Traditional V  Resistance Model

Inputs: Physically Based diction:
Meteorology Resistance Prediction:
Vegetation Model Ozone V,
Etc.




Deep Learning Regression Model

Inputs: Physically Based e
Meteorology Resistance Prediction:
Vegetation Model Ozone V,
Etc.

Deep Neural Network Regression Model




