

Analysis of Seasonality and Trends in WRF-CMAQ Modeled PM_{2.5} using Empirical Mode Decomposition

Huiying Luo¹, Marina Astitha¹, Christian Hogrefe², Rohit Mathur², and S. Trivikrama Rao^{1,3}

¹University of Connecticut ²US Environmental Protection Agency ³North Carolina State University

marina.astitha@uconn.edu airmq.uconn.edu

Scope and Objectives

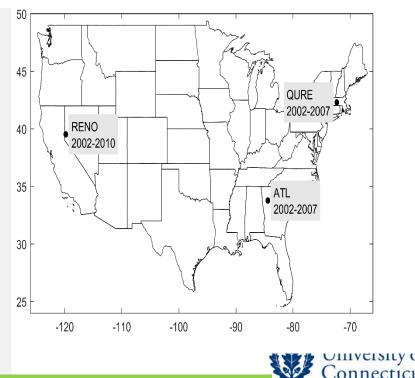
How well can we capture changes in PM_{2.5} and its speciated components induced by variations in meteorology and/or emissions over a decade?

- Analyze and interpret features embedded in PM_{2.5} observations and model outputs
- Assess the model's ability to reproduce changes/trends in observed PM_{2.5} concentrations
- Propose a new method for model evaluation of PM_{2.5} and its components without any preselection of temporal scales and assumptions of data linearity and stationarity

Icut School of Engineering

vot

Data


Model simulations

Coupled 2000-2010 <u>WRF-CMAQ</u> (vers. 5.0.1) with 36-km grid cells over the USA (Gan et al. 2015; Xing et al. 2013)

✓ **Observations**:

SO₄, NO₃, NH₄, OC, EC, Cl, and total PM_{2.5} are retrieved from the Chemical Speciation Network (CSN), Interagency Monitoring of Protected Visual Environments (IMPROVE) and SEARCH networks.

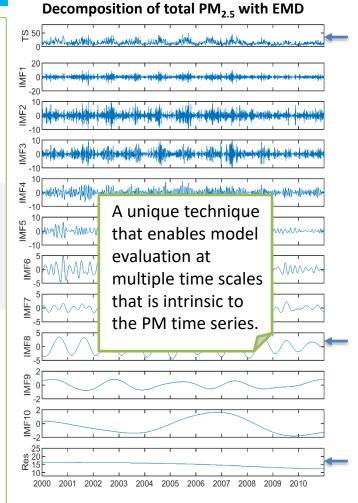
3 sites are used to demonstrate the proposed method of evaluation.

School of Engineering

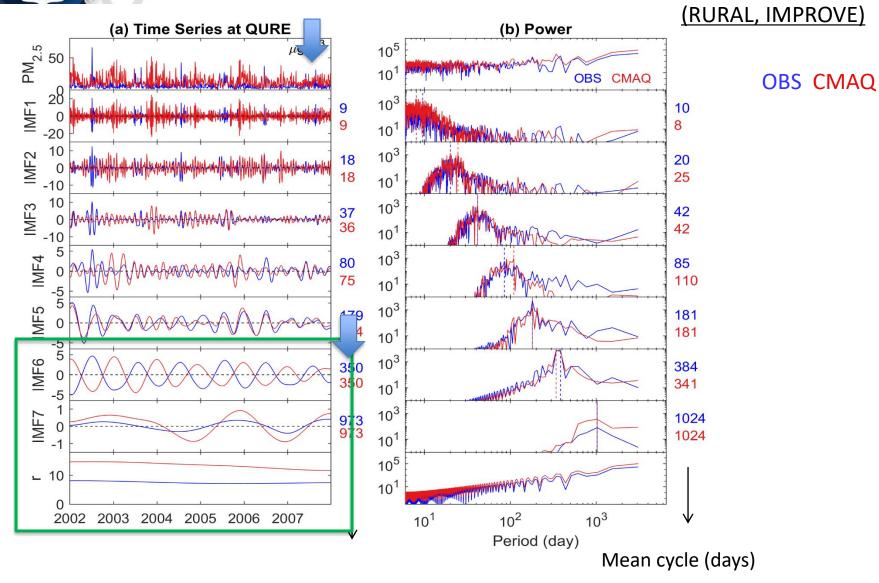
Luo et al. 2019; Atm Environ (under review)

Methodology

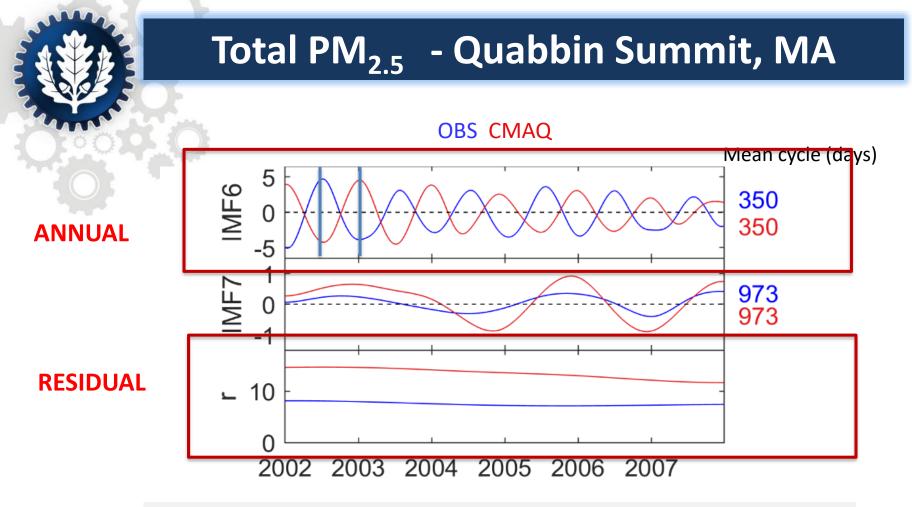
Empirical Mode Decomposition (EMD)


Signal x is decomposed to multiple Intrinsic Mode Functions (IMFs) d_i and a residual trend r_k through sifting processes (Huang et al., 1998):

 $x = \sum_{i=1}^{k} d_i + r_k$


An IMF must satisfy:

- 1) the number of extrema (maxima and minima) and zerocrossings must be equal or differ at most by one;
- 2) the local mean, defined as the mean of the upper and lower envelopes, must be zero.


Multiple improvements to address mode mixing as well as other problems are included in the most recent version of Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (Improved CEEMDAN) (Wu and Huang, 2009; Yeh et al., 2010; Torres et al., 2011; Colominas et al., 2014).

Total PM_{2.5} - Quabbin Summit, MA

Peak cycle (days)

- Very clear annual cycles of PM_{2.5} exist in both obs and CMAQ, but they are out of phase by up to six months.
- The residual (trend) indicates overestimation of the magnitude of the trend component by CMAQ; decreasing trend by CMAQ while obs show slight decline

PM₂₅ components - Quabbin Summit, MA Decomposed annual cycles (IMF6) from observed and simulated concentrations (a) QURE, TOT (c) NO₃ (b) SO Annual Top of pyramid: 2400 2400 correlation of the Time-1800 1800 (ep) 1200 dependent <u>ontiro timo corjes</u> 1200 ₹₊ correlations Point in pyramid: 600 correlation of the 0 0 time series (d) CI (f) EC 0.05 Annual centered around a 0.5 -0.5 specific day -0.05 2400 2400 2400 1800 1800 1800 t_w (day) 1200 1200 1200 600 600 600 0 n 0 2002 2003 2004 2005 2007 2002 2004 2006 2007 2002 2003 2005 2006 2007 2003 2005 2004 **OBS** CMAQ

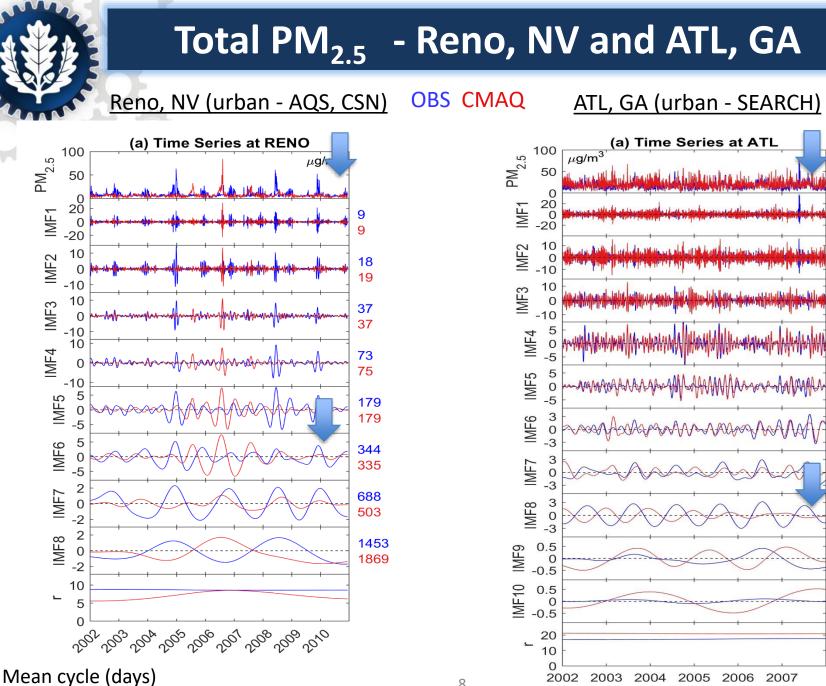
- Overestimated amplitude of NO_3 (4.3 x obs)
- Almost semi-annual shifted OC (-147 days); OC, EC and Cl contribute to the PM_{2.5} shift

-0.4

-0.2

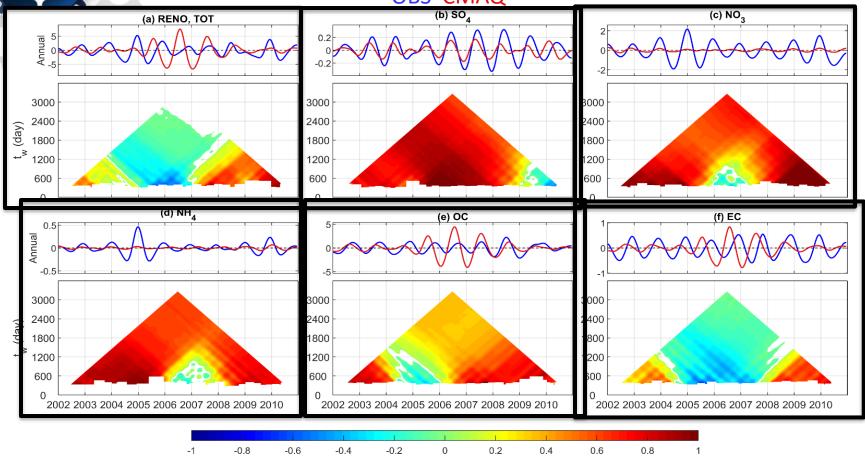
0.2

0.4


0.6

0.8

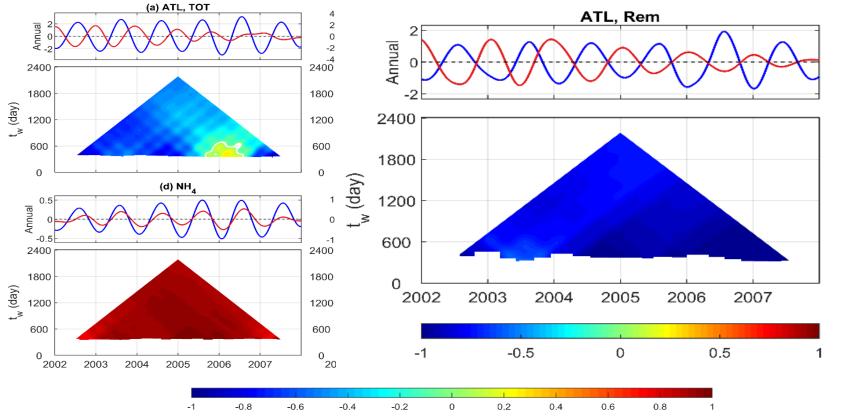
-0.6


-0.8

- OC directly drives the negative correlations
- EC follows the feature of OC in the first four years

PM_{2.5} components - Reno, NV

OBS CMAQ



- Site is situated in a wildfire-prone area
- Annual variations for total and speciated PM_{2.5} are largely underestimated
- The modeled phase of SO₄, NO₃, NH₄ and OC agrees with that of observations with few exceptions
- EC mimics the TDIC pyramid of total PM_{2.5}, implying the existence of errors in modeled EC that affected the model performance for total PM_{2.5} (potential impact of wildfires)

PM_{2.5} components - ATL, GA

OBS CMAQ

- Simulated total PM_{2.5} shows a shift of several months (132 days)
- Overestimation of NO_3 ; underestimation of NH_4 and phase shift of EC (54 days)
- Anti-correlated total PM_{2.5} annual cycles cannot be attributed to the available species
- The remaining species clearly played a role in driving the above discrepancies
- Anti-correlation likely due to inaccurate representation of the seasonal variation of the non-C portion
 of OM in the model version analyzed here that has been updated in more recent releases of CMAQ

Summary

- The EMD method enables direct comparison of the relative strengths of the various forcings, operating on different time scales, that are embedded in non-linear and nonstationary time series of observed and modeled concentrations
- ✓ Coordinated decomposition and evaluation of total and speciated PM_{2.5} provides a unique opportunity for modelers to assess influences of each PM_{2.5} species to total PM_{2.5} concentration in terms of time shifts for various temporal cycles and the magnitude of each component including the trend
- ✓ At these three sites:
 - The model generally is more capable of simulating the change in the trend than the absolute magnitude of the long-term trend component
 - The magnitude of SO₄ trend components is well represented across all sites
 - \circ The model reproduced the amplitude of the annual cycle for total PM_{2.5}, SO₄ and OC
 - $\,\circ\,$ The phase difference in the annual cycles for total $\rm PM_{2.5}$, OC and EC reveal a shift of up to half-year
 - More recent versions of CMAQ incorporate many updates to the treatment of organic aerosols that are expected to improve the representation of the seasonal cycle
 - New long-term simulations with CMAQv5.3 are planned for the near future which can be used to confirm this expected improvement

Acknowledgements

The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Two of the authors (MA and HL) gratefully acknowledge the support of this work by the Electric Power Research Institute (EPRI) Contract #00-10005071, 2015–2017.

