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» Andreae et al. (Science, 2004): observed » Fan et al. (Science, 2018): observed
delay in the onset of warm rain for pyro-clouds drastically enhanced updraft velocity and
over Amazon in the dry season, hypothesizing precipitation for convective storms

influenced by urban pollution plume at the
wet season of Amazon, mainly through :
“warm-phase invigoration”

Urban pollution: small particles

convection can be invigorated due to the ||~
delay: “cold-phase invigoration”

Biomass burning: large particles

Many studies showed that

| P v meteorological factors such as wind

ety e shear, RH, and CAPE would modulate
R, e B2 CCN impacts on DCCs (e.g., Fan et al.

2007, 2009, Khain et al.2005, 2009, Storer et
al., 2010, van den Heever et al. 2011, Lebo and

Morrison 2014).
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Fan et al., PNAS, 2013

\‘7’/ Warm and humid tropics — much larger
Northwest convective invigoration than mid-latitudes

« Many modeling
studies (Fan et al.
2007; 2013, Storer
and van den Heever
2013, Sheffield et al.
2015, Khain et al.
2008, 2012) showed
significant
convective
Invigoration in tropics
due to enhanced
condensational
heating.



Unigqueness of GoAmazon

« Unique field campaign design to
disentangle aerosol impacts from
the impact of meteorological
variables.

« Unique observational data:
convective intensity from RWP
and aerosol size distribution from

10 nm. Tot

« Manifest the role of ultrafine &0k
aerosol particles (<50 nm; UAP)
from urban plumes, generally Jroe
thought be too small to be !
activated _ wind T2 481
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:‘Wf’/ Observed enhancement of convective
acCitic

Northwest  [Ntensity and precipitation by aerosols
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7 Isolate aerosol effects from meteorological
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Northwest factors

D >15 nm: pre-storm environment Large-scale convergence
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V- wind as well as large-scale
convergence indicate that
none of them correlates with
an increase of updraft
intensity as UAP<50
Increases.
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scale (0.5 km)

WRF-SBM model simulations at cloud-resolving

» To see if model can simulate such substantial enhancements in convection

» To reveal the mechanisms responsible for such large invigoration by UAP_,

Conducted WRF with spectral-bin microphysics
(WRF-SBM) for a typical wet season convective
event on 17 March 2014 (0.5 km resolution)

SIPAM 2014-03-17_18:23:14
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corresponding cases by
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<7 Validation of the baseline run: Background + plume
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\7,,/ Similarly large enhancement from model simulations

Pacific Surface rain rate
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« Corresponding to drastic decrease in
- supersaturation

0O 3 6 9 12 15
Water supersaturation (%)
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Use Background (solid) and
Drop nucleation rate Background noUAP (dashed) to illustrate
Drop nucleation rate (mg™' s™)
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In pristine regions like the Amazon, aerosol particles in the lower
atmosphere are low in number concentration and large in size.
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Features of “warm-
phase invigoration”

» Does not delay rain or suppress
warm rain (in contrast to the effect
of CCN.gp)

» The effect is much more powerful
compared to “cold-phase
invigoration” because (a) the
enhanced heat is much larger and
(b) the heating is at the lower part
of storm clouds.

e Ultrafine aerosol particles (UAP_, )

® CCN-size aerosol particles (CCN, )

¢ Raindrop :@: Ice crystal

High

D Water supersaturation

Low

~ Cloud droplets from CCN>50

@ Cloud droplets from UAP .,

o Graupel

CCN_, + UAP_,

13
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" With
- anthropogenic
' aerosols

» Predict aerosol size distribution
Including small mode (No fixed
aerosol or droplet number)

Height (km)

» Resolve updrafts and predict
supersaturation (No saturation © s w6 0 a »
adjustment)

» Droplet condensation and
evaporation depend on
supersaturation and droplet
surface area (No saturation
adjustment).

~ Without
- anthropogenic
aerosols

Height (km)

10 20 30 40 10 20 30 40

N EEe Frequency (102 %)



\/ The problem with the piggybacking approach in
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Northwest

NATIONAL LABORATORY

» Grabowski, JAS (2015) and Grabowski Morrison, JAS (2016) denied invigoration with the

piggybacking approach as below:

D: Driving. P: Piggybacking. H: High CCN. L: Low CCN

Pair 1:
D LowCCN =dyn_L+ micro_L
— P_HighCCN =dyn_L + micro_H — not a realistic run

= Microphysical effect under dyn_L due to increasing CCN
from Low to High CCN .... (a)

Pair 2:
D_HighCCN =dyn_H + micro_H
— P_LowCCN =dyn_H + micro_L - not a realistic run

= Microphysical effect under dyn_H due to decreasing CCN
from High to Low CCN .... (b)

If (a) and (b) are are opposite in signs and
magnitudes are the same, it only means that
the microphysical effect is the same under
dyn Has under dyn L. We can not infer
anything about relative magnitudes of dyn H
and dyn_L.

The dynamics effect = D_HighCCN -
D LowCCN

Ensemble simulations is a solution for more
robust feedback to dynamics!
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Summary
Significance

Wildfire impact

This finding implies that from pre-industrial times to the
present day, small aerosols from human activity may have
significantly influenced storms in warm and humid places
through “warm-phase invigoration”.

The work would push the atmospheric observation field to
make progress in measuring convective microphysics, vertical
motion, and supersaturation in storms, all of which are very
challenging.

Also would stimulate more field campaigns over the warm
and humid regions to tackle this problem more robustly and
systematically.

Geophysical Research Letters

Research Letter (& OpenAccess () (B

Wildfire Impact on Environmental Thermodynamics and
Severe Convective Storms

Yuwei Zhang, Jiwen Fan X, Timothy Logan, Zhanqging Li, Cameron R. Homeyer

First published: 15 August 2019 | https://doi.org/10.1029/2019GL084534
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