Medium Complexity Aerosol Treatment Coupled with Clouds/Precipitation/Radiation in a USA Operational NWP Model

Gregory Thompson

Additional contributors:
Mei Xu, Trude Eidhammer, Tim Juliano, Maria Frediani, Judith Berner
Lin Deng (NCAR visitor from Chinese Academy of Meteorological Sciences)
NOAA ESRL-GSD RAP/HRRR team

Meteorology And Climate – Modeling for Air Quality Conference
12 Sep 2019, Davis, CA
Aerosol-aware microphysics

Microphysics in WRF, RAP, HRRR, etc.

• Aerosol-aware scheme operational in HRRR/RAP since 23Aug2016

Fundamental, 1st order aerosol treatment (NWP)

• activation of CCN & IN
• depletion of aerosols – precip scavenging
• simplistic aerosol replenishment (surface emissions)
 o now including surface dust parameterization (GOCART)
• ensure physics consistency between prior scheme and new one
• directly couple with radiation for direct/indirect effects
Dust Emission Scheme

Originally from WRF-Chem GOCART

- Enhanced “erodibility” using MODIS visible satellite climatological albedo
Dust Emission Example Simulation (10-day)

0-hour forecast valid 00:00:00 UTC 10 Mar 2012

initial time: 00z 10Mar
Aerosol Optical Depth (AOD) Included into RRTMG-SW scheme

- 50-day simulation, comparison of 2 AERONET sites in China
Dust Storm in India

MCS moves across Indo-Gangetic Plain (IGP)
Ship Tracks

2012Jul14

GOES-visible

MODIS albedo

MODIS droplet#

derived effective radius
Aerosol impacts on landfalling tropical cyclones in China

Storms: 4 currently (at least 4 more)
WRF-model simulations
5-km spacing with 1-km vortex following nest

Aerosols: urban increase of 4X, 8X, 16X, 32X, 64X

Evaluations
- Track & Intensity
- Radial and Tangential Winds
- Updraft strength
- Precipitation (regional & quadrants)
- Cloud and rain profiles (mass/number)

Contributions by Lin Deng
Typhoon Nida (2016Aug01)

Contributions by Lin Deng
Updrafts

experiment differences
more – less aerosols
within 150km of center
Aerosol-aware microphysics

13-year WRF simulation CONUS 4-km spacing

- WRF icing (Temp, LWC, MVD) versus FAA Tech. Ctr. icing database
Stochastic Parameter Perturbations

Within microphysics alter CCN & IN activation

- Addressing known single-parameter uncertainties

Experiment list

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Control</td>
</tr>
<tr>
<td>WN</td>
<td>White noise</td>
</tr>
<tr>
<td>P1-G</td>
<td>Graupel</td>
</tr>
<tr>
<td>P2-W</td>
<td>Water (mu)</td>
</tr>
<tr>
<td>P3-GW</td>
<td>Graupel + Water</td>
</tr>
<tr>
<td>P4-A</td>
<td>Aerosol (CCN+IN)</td>
</tr>
<tr>
<td>P5-GA</td>
<td>Graupel + Aerosol</td>
</tr>
<tr>
<td>P6-WA</td>
<td>Water + Aerosol</td>
</tr>
<tr>
<td>P7-GWA</td>
<td>Graupel + Water + Aerosol</td>
</tr>
<tr>
<td>P8-HDF</td>
<td>Higher Diffusion</td>
</tr>
</tbody>
</table>
Stochastic Parameter Perturbations
Very clear signals of 1st and 2nd aerosol indirect effects

Difference in Cloud drop number (vert integ.)
Difference in Shortwave radiation (at surface)
Stochastic Parameter Perturbations

Very clear signals of 1st and 2nd aerosol indirect effects

Rain content (by altitude)
Acknowledgements

We gratefully acknowledge the WRF model developers at NCAR-MMM and colleagues at NOAA’s Earth System Research Laboratory.

This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA. NCAR is sponsored by the National Science Foundation.