

Meteorology And Climate – Modeling for Air Quality (MAC-MAQ) Conference The Comparison of Dust-Radiation versus Dust-Cloud Interactions on the Development of a Simulated Mesoscale Convective System over North Africa

Chu-Chun Huang¹

S.-H. Chen¹, Y.-C. Lin², K. Earl¹, T. Matsui³, H.-H. Lee⁴, I.-C. Tsai⁵, J.-P. Chen², C.-T. Cheng⁶

¹University of California Davis, CA

²National Taiwan University, Taiwan; ³NASA Goddard Space Flight Center;
 ⁴Lawrence Livermore National Lab; ⁵Academia Sinica, Taiwan;
 ⁶National Science and Technology Center for Disaster Reduction (NCDR), Taiwan

Supported by NASA CloudSat and CALIPSO Science Team Program (NNX16AP17G)

2019.9.12

Introduction

High likelihood for interaction between an MCS and a massive dust plume

Haboob

Cold air generated by westward-propagating MCSs reaches the arid desert and produces haboob.

Introduction

What is the relative importance and impacts of dust-radiation and dust-cloud effects on MCS development over North Africa?

Thermal wind relation

$$\vec{V_T} = \frac{R}{f} \, \hat{k} \times \nabla \overline{T} \, ln \frac{p_L}{p_U}$$

Increase IN/CCN cloud micro- and macro- structure lifetime and precipitation

Dust-Cloud Interaction

Convective invigoration

Cloud-radiation interaction

A MCS case

- An MCS over North Africa: 04-07 July 2010
- Two convective cycles

July 6

July 7

July 5

July 4

A MCS case

- An MCS over North Africa: 04-07 July 2010
- Two convective cycles
- Developed near a moderate dust plume
- CloudSat and CALIPSO satellites passed over the MCS

10° 20° 30° 40° -20° -10° $\left(\right)$ 2010-07-04 00Z 30° 20° 10° copyright © {2012} EUMETSAT **0**° 2nd cycle 1st cycle July 6 July 7 July 5 July 4

July 6 02Z (2nd cycle)

Model & Experiments

- WRF-dust model (Chen et al. 2010, 2015)
- Three domains 27, 9 and 3 km
- **Dust-Radiation**: GSFC SW/LW scheme (Chou et al. 2001)
- **Dust-Microphysics**: 2-moment scheme (Cheng et al. 2010)
- Other physics schemes: MRF PBL, Kain-Fritsch cumulus

Experiments		Dust-Cloud Interaction (Dust-MP)	
		ON	OFF
Dust-Radiation Interaction (Dust-RA)	ON	YRYM	YRNM
	OFF	NRYM	NRNM

Verification – Aerosol Optical Depth (AOD) & Cloud Top Temperature (CTT)

Verification – MCS Structure

Radar reflectivity

Radar reflectivity

Vertical wind shear

Color shading & arrow: **600-900 mb Vertical wind shear (m s⁻¹)** Grey shading: **model cloud** Blue contours: **600-900 mb thickness (m)** Red contours: **AOD**

Thermal wind relation
$$\vec{V_T} = \frac{R}{f} \, \hat{k} \times \nabla \overline{T} \, ln \frac{p_L}{p_U}$$

2010-07-05 18Z (2nd cycle)

Convective energy & Surface Radiation Fluxes

[Day]

- Stabilization
- Larger CIN and CAPE

[Night]

- Reduce stability
- Promote storm intensification

Dust-Radiation Interaction

MCS Strength & Cloud Properties

[Area-Summed over MCS] Color shading: Total hydrometeors (kg m⁻³)

[Area-Averaged over MCS]
Black contours:
Convective updraft mass flux
= (ρw) (kg m⁻² s⁻¹)
[Only for grids with w > 1 ms⁻¹]

Red dotted lines: **0 & -40** °**C isotherms**

YRYM-NRYM Differences: Dust-RA Height (km) 10 2 b.1-**MCS Strength &** effect C 0.5 (w/ MP) **Cloud Properties** 6 0 **YRNM-NRNM** 15 Height (km) **Dust-RA** - 4 10 effect Percentage increase of 2 accumulated rainfall **YRYM-YRNM Dust-MP** (ref: NRNM) - 0 15 Height (km) 2 2 2 \mathbf{O} 7/4 12Z – 7/5 12Z effect -2 (w/ RA) 14% **Dust-RA** 5 0 **NRYM-NRNM** -4 Height (km) 10 2 18% **Dust-MP Dust-MP** -6effect Both **39%** 0 Jul.04 18Z Jul.05 06Z Jul.04 12Z Jul.05 00Z Jul.05 12Z Time

Ice Particle Freezing Rate

[Averaged over MCS & 7/4 12Z - 7/6 02Z] Solid lines:

Homogeneous nucleation

+ deposition nucleation on dust particles
+ heterogeneous freezing on bk aerosols

dotted lines:

Immersion freezing on dust particles

The dust-MP effect enhances the dust-RA effect on MCS development by enhancing immersion freezing

- HIGH dust concentration: dust direct effect > dust indirect effect.
- The dust-radiation interaction:
- stronger storms with more extensive anvil/stratiform cloud.
 - The dust-cloud interaction:
 - slows initial storm development
 - enhances immersion freezing extends cloud lifetime.
 - The impacts of the dust indirect effect on the MCS's development are strongly modulated by the simulation of dust-radiation interactions.

Thank you

Huang C.-C, S.-H. Chen, Y.-C. Lin, K. Earl, T. Matsui, H.-H. Lee, I-C Tsai, J.-P. Chen, and C.-T.
Cheng, 2019: The Comparison of Dust-Radiation versus Dust-Cloud Interactions on the
Development of an MCS over North Africa. *Mon. Wea. Rev.*, 147, 3301–3326

WRF dust model

+ Dust continuity equation (5-12 bins)

$\frac{\partial \mu \gamma}{\partial t} = \nabla \cdot \vec{V} \mu \gamma + C_{pbl} + C_{con} + C_{mic} + S_{\gamma} + E_{\gamma}$

- γ : Dust mixing ratio; $\mu = p_{hs} p_{ht}$ (mass)
- $C = \mu \gamma$ (Coupled dust mixing ratio)
- S_{γ} : Sedimentation (time splitting)

Dust emission:

- Barren type vegetation
- Soil moist volumetric fraction < 0.2
- 10-m wind > 6.0 ms⁻¹

Tegen and Fung (1994); Kok et al. 2011

 E_{γ} : Source / Sink (emission, wet scavenging, dry deposition)

Dust-cloud-radiation Interaction

- Dust-Radiation: Goddard Space Flight Center SW/LW radiation scheme (Chou and Suarez, 1999; Chou et al. 2001)
- Microphysics: 2-moment microphysics scheme (Cheng et al. 2010)

Hygroscopicity parameter κ=0.05 (Koehler et al. 2009)

A MCS case

- An MCS over North Africa: 04-07 July 2010
- Two convective cycles
- Developed near a moderate dust plume
- CloudSat and CALIPSO satellites passed over the MCS

Precipitation Rate

AOD verification

(a) MODIS AOD at 2010.07.03 12Z

20°W 15°W 10°W

0.6

25°N

20°N

15°N

10°N

5°N

30°W 25°W

0.3

0.0

(d) Modeled AOD at 2010.07.04 12Z

5°W

1.2

0.9

0°

1.5

5°E 10°E 15°E 20°E 25°E

2.1

2.4

1.8

CALIPSO

