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Scope and Objectives

SCOPE: Investigate and predict seasonal growth of algal blooms
using chlorophyll-𝜶 (chlor-𝜶) as a proxy

Predict chlor-𝛼 concentrations 
 Identify and evaluate the importance of 

environmental parameters in these predictions
Analyze and assess the contribution of atmospheric 

nitrogen deposition on chlor-𝛼

MERIS Sensor, European Space 
Agency (ESA) Envisat, 2011



MODEL DATA: Observed Variable

United States part of Lake Erie (2002-2012) 

• In-situ chlor-𝛼 measurements provided by: 
• Great Lakes National Program Office’s Great Lakes Environmental Database System 

(GLNPO GLENDA)
• Lake Erie Committee Forage Task Group (LEC FTG)

• Chlor-𝛼 measurements were seasonally averaged (April to September)



MODEL DATA: Modeled Variables

Lake Water Quality Assessment and Prediction

Machine Learning Model

(Random Forest)

Air Quality               
(EPA CMAQ-Bidi)

atmospheric N 
deposition

Meteorology                                  
(WRF)

air temp, wind, precipitation, 
humidity, radiation

Hydrology              
(VIC)

soil moisture, surface 
flow, baseflow, ET, 

water temp

Agriculture 
Management 
(USDA EPIC) 

fertilizer 
applications

Water Quality Indicator Observations

(Chlorophyll-𝛼)

Explanatory 
Variables

Numerical Prediction Models
12-km grid spacing

Target 
Variable

Chlor-𝛼

 Additional 5 variables for each modeled variable representing a time lag of 1 
to 5 days prior to sample collection date 

 Three types of variables: 
 Point – paired to closest model grid point to each chlor-𝛼 station
 Watershed (WS) – average daily values for all grids in the HUC-8 

watershed draining into lake
 Static – indicate location

Over 250 variables evaluated



MODEL DATA: Modeled Variables
Explanatory Variables Units Model

Latitude (static variable) degrees (°)

Longitude (static variable) degrees (°)

Radiation (Point) W/m2 WRF

Taverage (Point, WS) ℃ WRF

Precipitation (Point, WS) mm WRF

R_humidity (Point) WRF

Windspeed (Point) m/s WRF

Dry_Oxidized_N (Point, WS) kg/ha CMAQ

Dry_Reduced_N (Point, WS) kg/ha CMAQ

Wet_Oxidized_N (Point, WS) kg/ha CMAQ

Wet_Reduced_N (Point, WS) kg/ha CMAQ

Wet_Organic_N (Point, WS) kg/ha CMAQ

Evapotranspiration (Point) mm VIC

Water Flow (WS) Cfs VIC

Soil moisture Layer 1 (0-10 cm) (Point) mm VIC

Soil moisture Layer 2 (10-40 cm) (Point) mm VIC

Soil moisture Layer 3 (40-150 cm) (Point) mm VIC

Water_Temp_C (Point) ℃ VIC

surface runoff (WS) Mm EPIC

soil loss from water erosion (WS) ton/ha EPIC

N loss with sediment (WS) kg/ha EPIC

P loss with sediment (WS) kg/ha EPIC

nitrate loss in surface runoff (WS) kg/ha EPIC

labile P loss in surface runoff (WS) kg/ha EPIC

N in subsurface flow (WS) kg/ha EPIC

soluble N in drainage outflow (WS) kg/ha EPIC

soluble P loss through drainage system (WS) kg/ha EPIC

Layer1 N-NO3 (Nitrate) Application Rate (WS) kg/ha EPIC

Layer1 N-NH3 (Ammonia) Application Rate (WS) kg/ha EPIC

Layer1 ON (Organic N) Application Rate (WS) kg/ha EPIC

Layer1 MP (Mineralized P) Application Rate (WS) kg/ha EPIC

Layer1 OP (Organic P) Application Rate (WS) kg/ha EPIC

Layer2 N-NO3 (Nitrate) Application Rate (WS) kg/ha EPIC

Layer2 N-NH3 (Ammonia) Application Rate (WS) kg/ha EPIC

Layer2 ON (Organic N) Application Rate (WS) kg/ha EPIC

Layer2 MP (Mineralized P) Application Rate (WS) kg/ha EPIC



METHODOLOGY

• Random forest (RF) aggregates multiple decision trees to obtain a consensus 
prediction of the response variable. 

• Hyperparameters mtry (number of variables available for splitting at each 
node) and ntree (number of trees to grow) can be tuned to increase model 
performance. 

Simplified RF Diagram

Modeling Work Flow: 

 Step 1: Train and validate RF model with all explanatory variables together 
with randomly generated variables (used to reduce noise). 
 32 explanatory variables remain 

 Step 2: Tune hyperparameters: mtry and ntree

 Step 3: Examine performance of the RF model through 10-fold CV and 
evaluate importance of top explanatory variables through accumulated 
local effect (ALE) plots

 Step 4: Test the approach using 2012 as an individual holdout year by 
creating a separate RF model using data from 2002-2011 to train and 
validate the model.



Results: Prediction of chlor-𝜶

• Almost 60% of variance in chlor-𝛼 measurements is explained by the 
RF model

• 86.6% of the model’s predictions are within a factor of 2 of the obs

Contingency Table

Eutrophic Threshold: 
Chlor-𝛼 > 5μg/L

Prediction of Chlor-a

• Eutrophic conditions are identified 85.1% of the time
• Detection of eutrophic vs. non-eutrophic conditions is 80.2% 



Results: Variable Importance

Top Variables (32)

VIC

CMAQ

Static

EPIC

WRF



Discussion: Deposition of Atmospheric N

• Dry deposited reduced N calculated over the watershed (Dry_Reduced_ND_WS) is influential on all 6 days
• Chlor-𝛼 increases with an increase of Dry_Reduced_ND_WS from 5kg/ha to 10kg/ha

 No lag – black, Lag 1 – blue, Lag 2 – green, Lag 3 – red, Lag 4 – orange, Lag 5 – purple 
 

Overlaid Accumulated Local Effect (ALE) Plots

• Dry and wet reduced N at the point are also important variables though the plot does not indicate a 
drastic change (notice y-axis)

 Findings are in line with recent studies identifying:

• Atmosphere and tributaries in the US are shifting from NO3-dominated 
environment to a NH4-dominated environment (decreases in NOx

emissions but emissions of NH3 and unregulated air pollutants are 
continuous) (Compton et al. 2011; Li et al. 2016; Newell et. al. 2019; 
Paerl et al. 2018)

• N loads in the Maumee River are shifting from oxidized to reduced forms 
of N on a seasonal basis (Newell et. al. 2019)

• Strong association between reduced N loads and cyanobacterial growth 
(Newell et. al. 2019)

 CMAQ allows the inclusion of wet vs dry and oxidized vs. reduced 
atmospheric N deposition which have not been included in past HABs
assessments. 



Discussion: Fertilizer Application

• N and P fertilizer application rates are important variables influencing chlor-a differently depending 
on the lag day 

• Surface runoff increases, chlor-a concentrations increase 
• Nutrients, sediments, and other pollutants entering the lake

 No lag – black, Lag 1 – blue, Lag 2 – green, Lag 3 – red, Lag 4 – orange, Lag 5 – purple 
 

 N in subsurface flow increases, chlor-𝛼 increases

 Ammonia from N fertilizers transforms to nitrate which easily leaches 
into groundwater and become a continuous source of nutrient into 
the lake and nearby streams

 USGS indicates Lake Erie as an area of high risk for contamination of 
shallow groundwater by nitrate due to high N inputs (e.g., commercial 
fertilizer, atmospheric deposition, etc.) (U.S. Geological Survey 
Circular, 1999)



Discussion: Other Important Variables

 No lag – black, Lag 1 – blue, Lag 2 – green, Lag 3 – red, Lag 4 – orange, Lag 5 – purple 
 

Chlor-𝛼 concentrations more 
problematic in the west

(FTG LEC, 2019)

High ET increases chlor-𝛼
due to more stable and 
stagnant conditions 

(USGS, 2019)Spike in chlor-𝛼 when
water temperatures 
>25℃, optimal 
temperature for 
cyanobacteria 

(Michalak et al. 2013) 
Winds >5m/s drive 
resuspension events and 
carry nutrients 
stimulating initial algal 
growth

(Michalak et al. 2013) 



Limitations

• It is possible that it takes longer than 5 lag days for biological and 
chemical processes to occur

• No lake hydrodynamic information (e.g., lake thermal structure, water 
motions) 

• Wastewater discharges from industrial and municipal sources were not 
included

• No information on the Canadian portion of Lake Erie (US contributes to 
84% of total P loads to Lake Erie) (Canada-Ontario Lake Erie, 2018)

• No information on atmospheric deposition regarding P 



SUMMARY and FUTURE WORK

• The model identifies eutrophic conditions over 85% of the time

• Atmospheric deposition of reduced N plays an important role when it 
comes to chlor-𝛼 prediction

• The model identified 32 top influential variables conducive to a successful 
prediction of chlor-𝛼: N and P fertilizer applications and both atmospheric 
and hydrologic conditions 

• Given sufficient record of data, the predictive tool can be applied to other 
Great Lakes, other inland lakes, and coastal locations

• Similar approaches can be utilized to assess other water quality 
indicators: DO, total N, total P, and more 
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ADDITIONAL MATERIAL



Discussion: Testing Approach

• This test indicates generalizability through time
• Eutrophic conditions are identified 100% of the time
• Over 70% of variance in 2012 chlor-𝛼 measurements is explained by the RF model
• 82.4% of the model’s predictions are within a factor of 2 of the obs
• Eutrophic vs. non-eutrophic conditions are correctly detected 58.8% 

Separate RF model using: 
• 2002-2011 to train and validate
• 2012 for testing


